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Abatmet: The reactions of substituted me~hylanecyclopropane with clethylzinc-bromoform gave 
bromcepimf2.2]pentane d=ivatives, bromoform-aditien compounds, an oxabicydo-compound and 
adjacent d i ~ p o u n d ,  and the last ixcduct was derived to a novel a, ~unmanated nucloside. 
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Carbocyefic oxetanocins t and allene-nucleosides 2 NHz 
/ 

for I-nV and =her viruses, but oyolo pyi- , ,  

and cyclopropylmethyl-nucleoddes 3 are ineffective. 

For study of the su'uctu~activity relationships and HO _OH 

in new drug design, syntheses of novel cyclopmpylidene 
and/or spiro[2.2]pentyl-nucleosides are considered to be Carbocyclic oxetanocin-A 

of prime importance. 
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N 

Adonallene 

Akhachinskaya showed stereoselective additions of dihalocarbenes to 2-substituted methylenecyclo- 

propanes to give dihalospiro[2. 2] pentane derivatives. 4 Miyano etal. also reported monobromocyclo- 

projmmfion reactions between simple olefms and a bromocarbenoid intermediate which was generated from a 

diethylzinc bromoform system. 5 In the course of our work to synthesize novel carbocyclic nucleosides, we 

first examined some reactions of substituted methylenecyclopropanes I ,  2, 3, 4 with a diethylzine-bromofonn 

system to prepare the key intermediates of substituted bromospiro[2.2]pentanes and dibromocyclopropanes as 

shown in Scheme I and Table I. 

Thus, the reaction of dimethyl 3-methylene- R2 R 2 

cyclopropane-trans-l, 2-diearboxylate 1 (Feist's RI"~ 7~ + CHBr3 + Et2Zn = R ' ~  
+ Other Products 

diester)6-CI-tBr3-Fr77n system (I :7:6) was carded Br 
out at 68°C in nitrogen atmosphere to afford R1, R2: AlkoxycarbonylorAIkoxymethyl 

the target molecule, dimethyl 4-bromospiro[2.2] Scheme 1 

pentane-trans-I, 2-dicarboxylate $7, in 12% yield after column chromatography(1:5 ethyl acetate/hexane), and 

the isomer ratio was 8:3 (by =H NMR spectrum). A similar mixture was then reacted in air atmosphere which 

was reported to have accelerated generation of the bromocarbenoid reagent from diethylzinc and bromoform. 5 

At the low temperature, the reaction did not give the target molecule, upon heating the reaction mixture to 68°C, 

we obtained unexpectedly, dimethyl 3-bromo-3-(2, 2-dibromoethyl)cyclopropane-trans- 1,2-dicarboxylate 6 s in 
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61% yield. 6 maybea  radicel-fission adduct of bromoform to 1. 

ratio and catalysts gave no better result for the spiro-compound. 

Car~nes or carbanoids usually act as 

electmphilic reagents when they are added to 

olefins, so it is reasonable for the yield of the 
0 

spire-compound to:be low as I has two electron- 0 0 , , . ~ i  ~ 

withdrawing groups in the three-mcmbered ring. / O ~ J i ,  O. / ~ )Z~k ,_  O" 

In order to increase electron density of the double O I I  Br 

bond on the substrates, compound I was 1 5 12% 

reduced by LLAIH4 to give Feist's diol 9, and R 3 0 ~  7/~OR3 

the diol was derived to the corresponding TMS " 2 
I I  

o t, Bz,o  r andTBDMSethera2 l° and benzyl ether 3.11 Bzl OBzl Y ' I  

Compound 2 was consumed but gave no ~ t0  

meaningful products under several conditions. 3 7 15% 

On the other hand, the same treatment of comp O O I i  J J  
ound 3 at 68°C gave 6-benzyloxymethyl-1- ~ ' ~ ' 0  ~ ~ "~0"~  

bromo-3-oxabicyclo[3.1.O] hexune 7 t2 and 1- [ [  Br 

bromo- 1-bromomethyl-trans-2, 3-di(benzyloxy- 4 9 46% 

methyl)cyclopropane 8 ~3 in 15% and 12% 

Changing of the solvents, molecular 

T.a~.. 1. Reactions of Substituted Methytenecycioprapanes- 
uiethylzinc-uromoTorm Syslems and the Products 

Stad~ Matemls Products and Yields 

0 

6 61% 

No products were isolated 

Bz lO.~- /~OBz l  

Br" ] 
Br 
8 12% 

Br 0 

10 8% 

R3: TMS, TBDMS 

yields, respectively, after column chromatography (1:10 ethyl acetate/hexane). These results suggest the 

existence of some radical competing reactions. Compound 2 might be charged with radical fission at the 

electron-rich silylether bonds. EtZnR initiator (R=Et, Br) (1) =. - ~ . E t  

• Et + CHBr3 = EtBr + .CHBr2 (2) 

• CHBr 2 + EtZnR ~ • Et + Br2HCZnR (3) 
R 2 R 2 

Br2HCZnR + R ' / ~  / = R ' / ~  5,9 (4) 

R 2 Br R 2 
.R 2 R 1 / ~  CHBr 3 / ~ _  

, /~7" = ~]~ .CHBr2 +Ft' ~ ' u  (5) 
R .CHBr2 Br ~ r 

Br Br,, .Br 6, 10 

• Et + CHBr 3 . .Br  + EtCHBr2 

B z I O / " ~  ~ . B z l O / " ' ~  
.c n 8r . :o c 

• CHBr2 + BZlOBr/~Br OBz. "*~ BZlOBr~'lO + 

8 7 

Scheme 2 

8 afforded a cyelopropylidenemethylenyladeninel 116 in 65% yield. The structure of crystal 11 was 

confirmed as Figure I by X-ray analysis 11 was deprotected by 6 eq BCI3 at -20°C to give a novel a. 

Finally, monosubstituted 

compound 4 was subjected to the 

reaction at 60 "C to give the 

target molecule, ethyl 4-bromo- 

spiro[2.2] pentune- 1-¢ar~xylate 

9 =4, in 46% yield, whose isomer 

ratio was 2:1, in addition to 

ethyl 2-bromo-2-(2, 2-dibromo- 

ethyl)cyclopropane- 1 -carboxylate 

10 Is (8% yield). The whole 

r eason  mechanism is inferred as 

shown in Scheme 2 and it agrees 

with Miyano's inference, s 

Compounds $, 8, 9 were sub- 

jected to coupling with adenine in 

the presence of K2CO3, and only 

(6) 

(7) 
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unsaturated nucleoside, trans-3',4'-di(hydmxymethyl)cyclopropylidenemethylenyladenine 12 ~7, in91%yield 
as shown in Scheme 3. 

Figure I, Molecular structure of 1 1 crystal 

BzlO/""~ "~OBzl N H 2 

Br...~Br + ~/~ ] ~ N  
H 

NH 2 .NH2 

1, BCI3 K2CO~DMF 2, MeOH~....~ 

Bzl OBzl HO k/..v, OH 

11 12 

Scheme 3 

Other trials of coupling reactions between spiro-compounds, etc. and bases, and the interesting anti- 
HIV-1 activity data of the cyclopropylidene nucleosides will be reported in our next paper. 
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